
FSM: The RTLinuxTMCompany
RTLinux FAQ

Maintained by: FSM Labs

July 26, 2001

Abstract

This document is in LATEX syntax and is adopted from the pdflatex FAQ
pages.

c©This document is copyright Finite State Machine Labs Inc. All rights
reserved.

1

mailto:business@fsmlabs.com

1. GENERAL QUESTIONS

1.1. Q: What is RTLinux?

A. FSMLabs RTLinuxTM(RealTime Linux) is a small realtime operating system
that is used for systems where precise timing, down to a few microseconds
or less, is needed. For example, RTLinux is used to run telescopes (at Kitts
Peak), instruments (by NASA and many others), machine tools (NIST, Lang
GmBh,...), high speed network switches (Huawei and Alcatel), and all sorts of
other things where “usually fast enough” is not good enough.

1.2. Q: Is it hard to program?

A. RTLinux follows the POSIX 1003.13/PSE51 standard and so its API is pretty
close to ordinary POSIX threads/signals. RTLinux “kernel” applications look
like threads and signal handlers running on a tiny operating system close to
the bare machine.

Realtime applications on RTLinux are almost always made up of two parts:
a realtime kernel and the parts that do data logging, non-realtime networking,
GUIs, data analysis or display, and anything else that does not need precise
timing. This non-realtime part runs in either Linux or BSD UNIX and uses
the ordinary programming interface of these systems. One of the big advan-
tages of RTLinux is that realtime programmers can use a simple, very efficient,
threads/signals environment for hard realtime software, use a regular operat-
ing system with many features for everything else, and glue the parts together.
A typical application might use a standard database, a Perl-script, and a data
analysis package — all driven by a realtime thread.

1.3. Q: What is hard real-time?

A. Hard realtime means that timing is not “kinda-sorta” or “typical” or “gener-
ally”. That is, if a robot arm needs to be sent a signal every 500 microseconds,
it gets a signal every 500 microseconds (within some small, known, error) and
not typically in 500 microseconds or every 500 microseconds unless something
else is using the processor.

When researching realtime operating systems, be sure to compare
”worst case” timings. It’s tempting to quote ”typical” times, but un-
less you only need your RT application to ”typically” meet timing
requirements, this is not particularly useful.

1.4. Q: How does RTLinux work?

RTLinux uses a patented process to run a general purpose operating sys-
tem like Linux or BSD Unix as its lowest priority thread and to make sure

2

that this general purpose operating system can always be preempted (inter-
rupted) whenever a realtime operation needs to run. The basic mechanism that
makes RTLinux work is protected under U.S. Patent 5,995,745 and licensed
without fee to RTLinux users for commercial and non-commercial purposes as
described below.

1.5. Q: Who is FSMLabs?

A: Finite State Machine Labs, Inc. is the company formed by the creators of
RTLinux to give it commercial support and development. FSM offers RTLinux
in both GPL and non-GPL versions, related realtime software, training and con-
sulting.

1.6. Q: What platforms does RTLinux run on?

A: Almost every x86 (SMP and uniprocessor), plus PowerPC and Alpha. RTLinux/Pro
also supports MIPS.

1.7. Q: How much memory is needed and how powerful a processor?

A: RTLinux still works on the i486. The MiniRTL release fits RTLinux, Linux
and some applications on a single floppy disk and runs in 4Meg of memory.

1.8. Q: How well does it work?

A: Quite well. Worst-case times are about 15microseconds between the as-
sertion of an interrupt and the starting of the realtime handler on a generic x86
PC, and better on the Alpha and PowerPC platforms. These times are close
to the hardware limit, yet all of the power of Linux remains easily accessible to
the realtime programmer.

1.9. Q: How can I get RTLinux?

A: There are three ways to get RTLinux:
FSMLabs sells a CD-ROM with RTLinux V3. The purchase price includes

30 days of email support to get you up and running.
If you wish to get RTLinux for free, go to www.fsmlabs.com or www.rtlinux.com

and push the ”download” buttons.
RTLinux/Pro can be purchased from FSM by contacting business@fsmlabs.com.

1.10. Q: Is there support?

A: Yes. FSM sells yearly support for both RTLinux/Pro and RTLinux/GPL. And
purchase of the RTLinux v3.0 CD entitles you to 30 days of email support to

3

http://www.fsmlabs.com
http://www.rtlinux.com
mailto:business@fsmlabs.com

help you get your system up and running. In addition, we do everything from
short term consulting to developing subsystems to longterm support. For a list-
ing of FSMLabs products and services, see www.fsmlabs.com/fsmservices.pdf.
For specific questions, email: support@fsmlabs.com. The mailing lists at www.rtlinux.org/mailinglists.html
are quite active and a particularly good source of high quality free support.

1.11. Q: What is POSIX?

A: POSIX (the ”Portable Operating System Interface”) is a specification which
dictates how operating systems should behave. Among other things, it speci-
fies basic operations involving signaling and threads, making it easier for pro-
grammers to port their applications from one operating system to the other.
Lots of documentation on using POSIX calls is readily available.

RTLinux API is based on a small system POSIX “profile” that is specified
in POSIX standards 1003.13 PSE51. This profile is for a ”minimal realtime
system” environment and it looks very much like a multithreaded single POSIX
process. (On SMP systems, we have a realtime process per processor.) Of
course, each realtime process may have a Linux (or BSD) thread.

1.12. Q: What’s the license? What about the patent?

A: FSM provides two versions of RTLinux: GPL and Profesional. FSM charges
for RTLinux/Professional and RTLinux/Professional contains features and ports
that are not in GPL RTLinux, however, FSM supports and develops both ver-
sions, both can be used for commercial and non-commercial projects, and
source is available for both. (there is a GPL question below for more details).

GPL RTLinux is released under the GPL Version 2 and the Open RTLinux
Patent License and can be used, modified, and redistributed under the terms
of that license. If you modify RTLinux code, the new code is automatically gov-
erned by the GPL and all application software you write that uses the RTLinux
RT method must also be under the GPL. The Open RTLinux Patent License
can be found at www.fsmlabs.com/PATENT.html. There is no fee for using GPL
RTLinux as long as things are properly labled and credited and you scrupu-
lously follows the free license terms. If you violate or evade the terms of the
GPL, our copyright or the Open RTLinux Patent License, you have invalidated
the free licenses.

RTLinux/Professional is available with or without source and we charge a
fee for binary distribution (customers may not redistribute source).

1.13. Do I need licenses?

A: No. Once you have accepted the Open RTLinux Patent License you are free
to use RTLinux Open for commercial work: as long as you obey the terms of
the license.

4

http://www.fsmlabs.com/fsmservices.pdf
mailto:support@fsmlabs.com
http://www.rtlinux.org/mailinglists.html
http://www.fsmlabs.com/PATENT.html

1.14. Q: What is FSM’s attitude towards the GPL and “open” source?

FSM is in favor of the GPL where it is appropriate and against the GPL where it
is not. We sell non-GPL code and we sell rights to incorporate non-GPL code
into RTLinux while keeping it closed. On the other hand, we have a 6 year
history of developing GPL RTLinux and are continuing development of GPL
RTLinux, we sell support for GPL RTLinux, and we participate in development
of GPL Linux. Our non-GPL products, such as RTLinux/Pro, are “open-source”
in the sense that customers can get source, modify it, fix bugs, and use it as in-
depth documentation. We think that for critical embedded applications access
to source is of fundamental value.

FSM is a business and we don’t have a point to prove about source code
licenses. Our objectives are to make a profit by selling high quality products
and services to customers. The fundamental values of the business have to do
with providing reliable systems that can be used to make reliable applications
and with treating customers and employees well. As for licenses, we don’t get
too excited about them.

5

2. THE COMPETITION

2.1. Q: What makes RTLinux different from other realtime operating
systems?

A: The main advantage of RTLinux over earlier RTOS designs is that it allows
programmers to write applications that combine the advantages of a lean, hard
realtime operating system at hardware speeds with all the features of a general
purpose operating system. RTLinux’s emphasis is performance and ease-of-
use, not features. RTLinux relies on the underlying Linux (or BSD) system to
provide all soft realtime capabilities and features (GUI, soft realtime networking,
plotting, disk access, etc.), while RTLinux itself guarantees the timing correct-
ness of all hard realtime tasks.

Before RTLinux, RTOSs required programmers to accept a compromise:
either use a simple RTOS without any features, or use an RTOS mixed in with
all sorts of non-realtime services – and accept a significant loss in performance
and reliability. The RTLinux method of running Linux as a thread avoids this
choice. Hard realtime software can run in the realtime kernel and make use
of services and programs running in the non-realtime thread – but realtime
software is never delayed or slowed down by the non-realtime software. After
RTLinux appeared, several other operating systems adopted the same method,
but we don’t think that anyone of these imitators has understood the importance
of decoupled operation of RTLinux in terms of time-to-market, performance,
and development costs.

2.2. Q: What’s the difference between RTAI and RTLinux?

A: RTAI is a variant of RTLinux that has gone off on its own path. GPL encour-
ages such divergence and the Open RTLinux Patent License allows use of the
RTLinux basic process in any GPL code without a fee – as long as the license
terms are followed.

Though many differences are purely cosmetic, there is a fundamental dif-
ference between the two systems in attitude towards features. The RTLinux
developers have worked in OS development for many years and are convinced
that the realtime side of an RTOS should be as small and modular as possible
and we spend a lot of time considering interactions between components and
those “small” costs of features that turn fast software into slow software over
a few years. We are very conservative about adding new features or systems,
and we work very hard to make sure that any additional functionality we add
remains optional: Users who don’t need a specific function don’t pay any per-
formance price. RTAI seems to be much more feature friendly. We are inclined
to say, ”We’re not sure this won’t cause a problem three years down the line,
so let’s leave it out,” and the RTAI folks are more likely to say ”This looks useful
now.” As they say on the Internet: your mileage may vary.

Two other differences: RTLinux follows the POSIX API, RTAI has a blend of

6

the first RTLinux “V1” API, POSIX, and things that are original to RTAI; RTLinux
runs in production versions on multiple architectures; RTAI does not.

2.3. Q: What’s the relationship between FSM and Lineo?

A: Lineo sells RTLinux/GPL based services and products and so we hope they
advance the product, contribute to free source, and educate people about the
virtues of the RTLinux model.

2.4. Q: What version of Realtime Linux is provided on the Lineo CD?

A: Lineo says it has some earlier version of RTLinux and RTAI on its CD.

2.5. Q: What’s the relationship between FSM and MontaVista?

A: FSM and MontaVista have a formal partnership that allows MontaVista to
sell “Hard-Hat” Linux with RTLinux as an enhancement, supported by FSM.
MontaVista also has a GPL “realtime” version of Linux that they are developing
in-house. We see this as an interesting research project and believe that any
improvements in Linux “low latency” operation will only make RTLinux more
useful.

7

3. HELP DESK QUESTIONS

3.1. Q: How do I get started with RTLinux?

A: The INSTALL file in the distribution contains installation instructions. Get-
tingStarted.txt is a good starting point on the API.

3.2. Q: What is miniRTL?

A. MiniRTL is a tiny implementation of RTLinux which fits on a 1.44MB floppy
and runs on i486 machines. It is targeted especially towards industry-standard
PC-104 boards. This is a minimally-sized standalone, bootable, networked
realtime Linux system that includes the following features:

• Linux Kernel 2.2.13

• RTLinux v.2.0

• glibc 2.0.7

• Full network support via ethernet, slip or plip (it’s only a floppy...)

• inetd/telnet/tftp access

• ssh/scp access for added security

• sunrpc support as loadable modules (portmap NFS)

• mail (outgoing mail only...)

• mini httpd , a full blown httpd with cgi-bin support

More information about miniRTL can be found at www.rtlinux.org/minirtl.html.

3.3. Q: What is RTiC-Lab?

A: RTic-Lab is a graphical front end for hard realtime control via RTLinux. It
gives the controls engineer access to:

• Plant states,

• Plant I/O,

• Controller states,

• Controller parameters (scalar or matrix), and

• Hard realtime environment for plant modeling.

Run time data can be saved/displayed into:

8

http://www.rtlinux.org/minirtl.html

• stdout,

• disk,

• RTiC-Scope, a standalone Oscilloscipe Emulator, or

• any standalone application written by the user. Communication between
the user’s program and RTiC-Lab is handled by RTiC-Lab’s easy-to-use
API.

RTiC-Lab can be obtained from www.rtic-lab.org. If you install RTLinux from
the FSMLabs v3.0 CD, RTiC-Lab is placed on your hard disk at that time.

3.4. Q: What about priority inversion/priority inheritance?

A: Any priority-based realtime system will have a problem with mutual exclu-
sion. When a lower-priority task owns a resource that a higher priority task
wants, mutual exclusion algorithms make the higher priority task wait – prior-
ities are ”inverted.” The correct solution to this problem is to make clean use
of mutual exclusion mechanisms, by making sure, for example, that operations
on shared resources are simple and fast. The incorrect approach is to try to
use semaphores to guard use of shared resources. This is a fundamentally
incorrect design and can lead to a problem like this:

• The low priority task acquires a semaphore.

• The high priority task blocks waiting for the semaphore.

• A medium priority task runs, keeping the low priority task from getting a
chance to release the semaphore.

Some people claim that semaphores using something called ”priority in-
heritance” fix this problem. In priority inheritance, when a high-priority task
blocks, it raises the priority of the task holding the semaphore, allowing it to
complete. This is a dangerous method that we do not support in RTLinux.
Our belief is that designers of realtime systems must understand exactly what
shared resources exist, and that they should design access methods to these
resources that are bounded in time. Consider what happens under priority in-
heritance if the low-priority process acquires the semaphore and waits for a
second semaphore, or for an I/O event. Priority inheritance tries to cover up a
design problem with a complicated, slow and failure-prone hack. We have yet
to see a problem that could not be better solved another way. Ask us.

3.5. Q: Will my X-windows or Oracle or [you name it] Linux program
work with RTLinux?

A: Yes. RTLinux runs a very slightly modified version of Linux as a subtask.
There are no application-level visible differences – except that realtime devices
are usable.

9

http://www.rtic-lab.org

3.6. Q: I get errors when trying to build RTLinux. What’s wrong?

A: Check that:

• The ”linux” directory (or symbolic link) points to the Linux kernel source
tree

• the Linux kernel is patched with the RTLinux patch. (To check this, see if
linux/include/asm-i386/rtlinux_cli.h is present.)

• You have performed both:

make config

make dep

in the Linux kernel directory.

3.7. Q: How do I compile my own programs for RTLinux?

A: You need to put the following line into your Makefile : include rtl.mk .
The rtl.mk file is created during compilation of RTLinux. It contains the paths
to include files and compiler options.

You need to put the rtl.mk file into a place where make can find it, for
example in the current directory.

Simple programs can be compiled with ¡userinput¿make -f rtl.mk rt process.o¡/userinput¿

3.8. Q: Why does the RTLinux kernel crash?

A: There are several possible causes.

• You may be using the wrong kernel. Recent versions of ”patch” fail
SILENTLY if you use the wrong kernel version.

• Some distributions contain kernel sources with patches applied that might
not be compatible with RTLinux. The kernels that come with RedHat
generally will not work with the RTLinux patch. If unsure, try downloading
the kernel sources from ftp.kernel.org, www.kernel.org, or any one of its
mirrors.

• Advanced Power Management (APM) is enabled in your kernel. Recom-
pile your kernel and disable APM – it interferes with the RTLinux kernel.

• Your BIOS has special power management features. Restart your com-
puter, enter the BIOS and disable these features.

• Check that you have specified the correct CPU type. For example, if you
have a Pentium, be sure to change the CPU type from the default 686 to
P5.

10

http://ftp.kernel.org
http://www.kernel.org

• gcc 2.7.2.3 or egcs 1.1.2 (2.91) is recommended for 2.2.x kernel compi-
lation. If your gcc is a different version, this may be a problem. RedHat
systems are fine. On newer Debian systems, you will need to install the
gcc272 package.

For 2.4.x kernels, there is a known problem with RedHat 7.x systems. If
you are using them, you need to change

CC = $(CROSS_COMPILE)gcc

in the Linux kernel Makefile to

CC = kgcc

If nothing works, please report the problem to the mailing list (rtl@rtlinux.org).

3.9. Q: Is there a debugger for Real-Time threads?

A: Beginning with RTLinux v2.3, the debugger is included in the debugger/
subdirectory of the RTLinux distribution.

3.10. Q: How can I prevent programming errors in my RT-programs from
crashing the system?

A: See debugger/README . To intercept all hardware exceptions, simply load
the debugger.

3.11. Q: Can I debug the initialization code with the RTLinux debugger?

A: Not at this time. You should move the initialization code to the beginning of
one of your pthreads code.

3.12. Q: Does the debug module support multi-module debug?

A: Yes, although the support is not complete as gdb has bugs with respect
to symbol handling. You need to use add-symbol-file to load other modules’s
symbol table into gdb. The .gdbinit file in the debugger/ directory contains
some useful macros to do that:

modaddsym module.o --- load symbols for module.o
modaddsched --- load symbols for the RTLinux scheduler

The latter is very useful when using gdb’s backtrace command. For
macros to work, an rtl.mk file should be present in the current directory.

There is an annoying bug in add-symbol-file (gdb 4.18): data symbols do
not use correct addresses. Examining code does work.

A (not very convenient) way to solve the problem with data symbols is to kill
gdb, and start it on the module that generated the last exception.

11

mailto:rtl@rtlinux.org

3.13. Q: Can I use the RTLinux debugger to debug RTLinux modules
running on a remote machine?

A: Yes. Install the netcat program on the remote machine. After an exception
in a realtime thread has occured, you can forward the RT-FIFO used by the
debugger to your local machine with the following command:

ssh remotehost -L 3000:remotehost:5000 ’nc -l -p 5000 /dev/rtf10
/dev/rtf10’

In gdb, you can connect to the remote debugger with:
target remote localhost:3000 .
The netcat program is available, for example, in the Debian distribution.

3.14. Q: Why do modules fail to load (e.g., sh scripts/insrtl fails)?

A: You must have root access to do this (man ”su”).

3.15. Q: How do I get rid of a ”couldn’t find the kernel version the module
was compiled for” message?

A: Use

#include <;rtl.h>;

in your Linux module.

3.16. Q: I’m seeing large delays in scheduling of RT threads

A: There are several possible causes:

• Advanced Power Management (APM) is enabled in your kernel. Recom-
pile your kernel and disable APM – it interferes with the RTLinux kernel.

• The video hardware locks the PCI bus. This can be apparent if delays
happen when dragging windows in X. Try using a different video card.

• Several people reported that PS/2 mouse can cause substantial delays;
switching to serial mouse generally fixes it.

• The ISA bus devices may introduce delays as well. PCI-only systems are
recommended.

• SDRAM memory timings are incorrect.

12

3.17. Q: Why do I get messages about unresolved symbols during insmod?

A: Try doing a full recompilation:

• make mrproper (in the Linux kernel directory)

• make clean (in the RTLinux top-level directory)

• Reboot, and your problem should go away. In general, recompiling from
scratch tend to solve most problems.

Another problem may be that your modutils are too old. See the Documentation/Changes
file in the Linux kernel directory, and upgrade your system software as required.

3.18. Q: Why do I get ”Error opening /dev/rtf0” messages?

A: You need to create RT-devices in /dev/. To do this, become root, cd into the
top-level RTLinux directory and type:

make devices

3.19. Math symbols

h.o: unresolved symbol __isnan
h.o: unresolved symbol fputs
h.o: unresolved symbol stderr
h.o: unresolved symbol __assert_fail

A: You need to link in the C library. Add -lc after -lm in the linker command
line.

3.20. Q: Can I use floating-point operations in realtime threads?

A: Currently, only on the x86 and PowerPC platforms, provided the CPU sup-
ports floating point. (For x86, this means 486 DX and up.) Kernel FP emulation
will not work. To use floating-point in a thread, you should set the FP flag in the
pthread attribute structure at the time of thread creation:

pthread_attr_setfp_np (&attr, 1)

An alternative is to use the pthread_setfp_np function. It must be called
in the thread before any FP-operations.

For a working example of FP operation in RT-threads, see examples/fp .
¡note¿ For PowerPC, you need to append ”-mhard-float ” to CFLAGS.

See examples/fp/Makefile .
For functions like sin() , you will need to link in math library (-lm), e.g.

13

include rtl.mk
rt_process.o: rt_process.c
$(CC) ${CFLAGS} -c -o rt_process_tmp.o rt_process.c
ld -r -static rt_process_tmp.o -o rt_process.o -L/usr/lib -lm
rm -f rt_process_tmp.o

¡/note¿

3.21. Q: Can I use C++ in my RTLinux threads?

A: See examples/cpp .

3.22. Q: How can I use one-shot scheduling for my RT-threads?

A: You can use the clock_nanosleep . See examples/misc/nanosleep.c .
You can use the absolute timeout of hrt2ts(HRTIME_INFINITY) to make
the task sleep forever.

3.23. Q: How do I create an interrupt-driven task?

A: In the realtime task, use the following loop:

while (1) {
pthread_suspend_np(pthread_self());
... // handle the interrupt
}

In your initialization routine (such as init_module()), install an inter-
rupt handler using rtl_request_irq . In the interrupt handler itself, call
pthread_wakeup_np (thread id) to wake the realtime thread up, where
the thread id denotes the identifier of the realtime task.

3.24. Q: How do I suspend a task?

A: Use the pthread_suspend_np() function.

3.25. Q: How can I make my RT-thread go to sleep?

A: Use nanosleep() or usleep() or clock_nanosleep() . An example is
provided in examples/misc/nanosleep.c .

3.26. Q: How do I use shared memory in RTLinux?

A: Use mbuff . See drivers/mbuff .

14

3.27. Q: How do I access physical memory from RT-programs?

A: The /dev/mem interface is available through the rtl_posixio module.
See the /dev/mem description in GettingStarted.txt

3.28. Q: Is it possible to create RT-threads from other RT-threads?

A: Yes, starting from RTLinux version 3.1. The thread stack should be pre-
allocated and passed to pthread_create() via pthread attributes See pthread_attr_setstackaddr, pthread_attr_setstacksize .
An example can be found in examples/misc/create_recursive.c .

3.29. Q: Is it possible to share RT-Linux semaphores, mutexes, and other
objects between modules?

A: Yes. By default, loaded modules export all non-static symbols to the global
symbol table.

Module 1:

sem_t common_sem; /* define the semaphore */
...
sem_wait(&common_sem);

Module 2:

extern sem_t common_sem; /* declare external semaphore */
...
sem_post(&common_sem);

Module that defines the semaphore (in this case, Module 1), has to be
loaded first.

3.30. Q: How do Linux processes communicate with RTLinux threads?

A: RTfifos provide a device interface that can be read/written on the Linux side.
(Data transfer is over 100Mbytes/second in a modern x86.) The simplest use
of this interface is with a shell command:

cat < /dev/rtf1 > logfile
This is a workable data logging program. There is also a sophisticated

shared memory utility, and since Linux is a ”thread,” you can send it signals via
pthread_kill() .

3.31. Q: Why do I get messages about unresolved symbols in insmod?

A: You need to load the rtl_posixio.o module from the system directory.
Alternatively, you can disable POSIX IO support during RTLinux configuration
and recompile.

15

To save yourself the trouble of figuring out what modules need to be loaded,
type make modules install , and then:

modprobe rtl_sched modprobe rtl_fifo
This will load modules needed for running basic realtime programs. Refer

to modprobe(8) .

3.32. Q: An RT-FIFO device seems to only provide one-way communica-
tion with the RT system. I need both reads and writes to work on
the Linux side.

A:Yes. You can use bidirectional fifos. On the RT-side, this is a pair of ordinary
uni-directional FIFOs. On the user side, one /dev/rtfXX device handles both
reads and writes. Please see the rtf_make_user_pair manual page.

3.33. Q: Is there any way to flush a fifo ?

A: Use:

rtf_flush(unsigned int fifo);

3.34. Q: How do I print messages from RTL-programs?

A: Use

#include <;rtl_core.h>;
rtl_printf(const char *{\em format},...);

The arguments to this function are the same as to printf(3) . The mes-
sages from rtl_printf are directed to the kernel buffer and syslog. You can
view them by running dmesg and/or viewing /var/log/messages .

¡note¿ It is unsafe to use printk() from RTLinux threads and interrupt
handlers.¡/note¿

3.35. Q: How do I print 64-bit time values ?

A:You can use

rtl_printf("%d%09d", n / 1000000000, n % 1000000000);

Alternatively, you can convert your 64-bit timevalue into a struct timespec using
struct timespec timespec_from_ns (long long t);

3.36. Q: What are the time units in the old RTL versions 1.x?

A: They are the ticks of the 8254 PC timer. There are 1193180 ticks in a sec-
ond. rt_get_time() returns the number of 8254 ticks since the rtl_time
module was installed with insmod(8) .

16

3.37. Q: Why do the programs using the old RTLinux API (versions 1.x
and older) fail to compile?

A: You need to enable CONFIGRTL USEV1 API (make config) and recom-
pile the system (make clean; make).

17

4. OPEN SOURCE GPL AND PATENTS

4.1. Is FSM a GPL company?

FSM is neither a GPL company nor a Linux company although we make ex-
tensive use of both, contribute to both, and are certainly in favor of both. We
don’t think that GPL is the answer to every problem and we make sure our
paying customers who don’t want to GPL their code can protect their own in-
novations. Of course, this applies to us as well, and we also sell a non-GPL
version of RTLinux with many improvements: Customers can get the source
for this system, but it is not freely redistributable.

It’s worth pointing out that some of the biggest supporters of GPL software
are in a wonderful position. You can pore through IBM’s Linux for S390 code,
copy it, improve it, market it, etc. and whatever you do, IBM still makes its
money selling hardware, firmware, and the support that will come to the man-
ufacturer. For IBM, or for Oracle, or SAP or Intel, or for anyone else owning
a product that cannot be freely copied, a free product that expands the mar-
ket is only good. Maybe even Microsoft will do an analysis of Office sales and
discover the good side of GPL one day.

So we think GPL is a good thing, we see it as a permanent fixture in the
market, and we plan to continue developing RTLinux GPL. But our business
is to provide high quality realtime OS technology to paying customers and to
make a profit. When that means releasing code under GPL, we will do so.
When it means releasing code under a different license we will do that.

4.2. Is the Open Patent License GPL compatible?

Legally, we don’t think there is a question. The GPL is a copyright license,
it specifically restricts itself to copyright issues of copying, modification, and
distribution. The RTLinux Open Patent License is a patent license, it licenses
use of the patented process, an issue that has nothing to do with copying,
modification, and distribtion.

Ethically, we think it’s pretty straightforward too. The Open Patent License
says that if you want to use the RTLinux process under GPL code, you can do
so without paying a fee. If you don’t like GPL for your code, then you need to
either use unmodified RTLinux that FSM releases, or get a non-GPL license
from FSM. If you like the GPL, you get to use our process under the GPL, if
you don’t like the GPL, then purchase a license (and our licenses are quite
reasonable).

5. CREDITS

CREDITS

18

5.1. Q: Who created RTLinux?

A: RTLinux began life as a research project at New Mexico Tech in Socorro,
New Mexico. The design and method came from Victor Yodaiken. RTLinux was
implemented first, and much of its initial API came from Michael Barabanov.

RTLinux is developed and maintained by FSMLabs, Inc. The main ker-
nel developers are Victor Yodaiken, Michael Barabanov and Cort Dougan, al-
though many other people have contributed code or testing. Notable among
these are:

• Jerry Epplin. The V1 Semaphores and IPC package.

• Andreas Franzen. Testing. Debian versions.

• Zdenek Kabelac. Testing.

• Jochen Kuepper. RT-com.

• Paolo Mantegazza. Help with floating point. Criticism. Competition.

• Jens Michaelsen. Drivers.

• Tomasz Motylewski. The king of shared memory.

• Patrick Mourot. Testing.

• David Olofson. Testing.

• Steve Rosenbluth. DAQ drivers.

• David Schleef. COMEDI – a system for generating DAQ drivers.

• Phil Wilshire. Testing.

• And the following students and graduates of New Mexico Tech: Axel
Bernal, Oleg Subbotin, Ramesh Nalluri, Jan Deninger, Hua Mao and Jose
Guilberto.

• Bill Krauss: Documentation.

• Edgar Hilton: Documentation, testing, rtic-lab.sourceforge.net.

If your name has been left off the list unfairly, please support@fsmlabs.com.

19

http://rtic-lab.sourceforge.net
mailto:support@fsmlabs.com

